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Abstract A perfect evolvement process of random crack

cores is presented and a random crack core model for pre-

dicting the longitudinal tensile strengths of unidirectional

composites is built in this paper. Based on the crack prop-

agation rules, the numerical relationship of the number of

random crack cores, evolvement probability of a random

crack core evolving to critical size, and failure probability

of a unidirectional composite are deduced. With consider-

ing some fibers breaks simultaneously and the influenced-

length of the random crack cores increasing with the

number of broken fibers, evolvement probability algorithms

of a random crack core are developed based on the perfect

evolvement process. At last, the longitudinal tensile

strengths of unidirectional composites are predicted by the

random crack core model, and the result shows that the

random crack core model is more accurate than the classical

theoretical models.

Introduction

Composites have been widely used in aerospace, military,

and civil manufacturing industries, because of their high

specific strength, specific modulus, wear and fatigue resis-

tance [1]. However, the theoretical analysis on composite

strengths is far behind. Such restriction has limited com-

posites for further application. In despite of the fact that, a

relatively integrated theory on composite micro-strength

has been founded via micro-stress analysis combining with

micro-strength criterions, it is still not satisfying due to the

capability dispersing of constituent materials [2]. Statistical

method, considering capability dispersing of constituent

materials, has been used to analyze stochastic courses of

composite failures. A virtue of this method is that it could

transit analysis objects from micro-scale to macro-scale

easily. In recent years, a number of statistical theories and

models for predicting the longitudinal tensile strengths of

unidirectional composites have been proposed.

Using the weakest link theory, Gucer and Gurland [3]

founded statistical chain of bundles model for predicting

unidirectional composite strengths. Rosen [4] proposed the

conception of ‘‘ineffective length’’ first and treated a uni-

directional composite as a series of chains whose length is

equal to the ineffective length. These are the well-known

Gucer–Gurland–Rosen chain model based on the assump-

tion that the failure of one chain means the invalidation of

the whole composite. Nevertheless, the global load sharing

principle adopted by the chain model is not deemed to be

reasonable.

The fragmentation model was founded by Curtin [5, 6].

Based on the shear-lag theory, the density of breaks was

described with considering load redistribution nearby fiber

breakpoints. It was indicated that accretion of the break

density is the direct reason of gradual stiffness decrease

and final invalidation of composites. Although the density

of breaks was analyzed in the model, congregative effect of

breaks was ignored because of adopting the global load

sharing principle.

A statistical theory of crack evolvement was proposed

by Zweben, etc. [7, 8], in which the local load sharing

principle was adopted for analyzing stress concentrative

around cracks. The high local stress adds the break prob-

abilities of intact fibers around cracks evidently. Even if the

H. Yuan (&) � W. Wen � H. Cui � Y. Xu

College of Energy and Power Engineering, Nanjing University

of Aeronautics and Astronautics, Nanjing 210016, Jiangsu,

China

e-mail: yuanhui@nuaa.edu.cn

123

J Mater Sci (2009) 44:3026–3034

DOI 10.1007/s10853-009-3399-6



average stress level of composites is not enhanced, it is

possible that intact fibers around cracks break on and on to

the final invalidation of whole composites under the effect

of local stress concentrations. The simplest way of the

statistical crack evolvement theory assumed that a break of

a discretional fiber means the invalidation of the whole

composite [7]. The statistical crack evolvement theory was

developed by Batdorf, etc. [9, 10]. It was considered that a

composite failure will occur when a crack with some

broken fibers is self-propagating, i.e. the crack evolves

without any further applied stress.

A random critical-core model for predicting the longi-

tudinal tensile strengths of unidirectional composites was

proposed by Zeng [11]. Based on characters of crack

propagations, it was pointed that the crack ineffective

length increases with the number of broken fibers, which

was deemed to be one of the main achievements in the

model. However, unidirectional composites in the model

were assumed impractically to be plane lamellas with two-

dimensional fiber arrays.

Crack propagation is a complicated stochastic process.

Based on recursive analysis, algorithm of crack evolvement

probabilities for plane composites was proposed by Harlow

[12]. Afterward the recursive algorithm was developed for

unidirectional composites with fibers placed in hexagonal

arrays by Pitt [13]. However, courses of the recursive anal-

ysis are complex, and tail-errors exist in the recursive

analysis. Markov process without tail-errors was adopted to

describe the course of crack evolvement by Goda [14],

but the number of crack evolvement paths increases rapidly

with the number of broken fibers. Therefore, Markov process

is unwieldy for analyzing crack evolvement probabilities.

With the developments of computer technologies,

Monte Carlo simulations were widely used for analyzing

crack evolvements [15, 16]. However, these investigations

were localized in small-scale composites. Difficulties still

exist to simulate big-scale composite structures due to the

limitation of current computing resources.

In this study, fibers are assumed to place in hexagonal

arrays in unidirectional composites. On the basis of the

crack propagation rules, the numerical relationship of the

number of random crack cores, evolvement probability of a

random crack core evolving to critical size and failure

probability of a composite are deduced, and a theory of

random crack cores is presented. To simplify the analysis, a

perfect evolvement process of random crack cores was

proposed, in which the local load sharing principle is

adopted and the influenced-length of random crack cores

increasing with the number of broken fibers is considered.

The evolvement probability algorithm of random crack

cores considering some fibers breaks simultaneously in

evolvement processes of random crack cores is developed

to increase the precision. Then, a random crack core model

for predicting the longitudinal tensile strengths of unidi-

rectional composites is built. At last, the random crack core

model and its predictive results of unidirectional composite

strengths are discussed by comparing with the referenced

experimental and other theoretical results, and the size

effect of composite strengths was analyzed by the random

crack core model.

The random crack core theory

Preview of the random crack core theory

Due to strength dispersing of single fibers, some weak

fibers may break first when a composite withstands a finite

load, and then some random crack cores germinate in the

composite. Intact fibers around random crack cores may

break due to stress concentrations. When the size of a

random crack core is big enough, the random crack core

will be self-propagating, and then the whole composite will

be invalidated ultimately.

Based on the crack propagation rules, a theory of random

crack cores to predict the longitudinal tensile strengths of

unidirectional composites is proposed. The primary con-

tents of the random crack core theory are shown as follows:

(1) the failure probability of a composite under a certain

stress equals to the probability of existing a crack core

evolving to critical size; (2) the number of random crack

cores equals to the number of breaches germinated origi-

nally, and these crack cores distribute discretionarily and

independently in the composite; (3) if the further evolve-

ment probability of a random crack core is big enough, its

further evolvement could be treated as an inevitable event,

and the size of the random crack core is the critical size; (4)

the event of a random crack core evolving to the critical size

means the invalidation of the whole composite.

The number of random crack cores

Strengths of single fibers are dispersive, which was proved

following tow-parameter Weibull distribution by Coleman

[17]. The expression of strength distribution of single fibers

is given as follows:

Fðrf ; dÞ ¼ 1� exp � d
L0

rf

r0

� �b
" #

ð1Þ

where rf is the tensile stress of fibers, d is the length of

fiber, r0 is scaling parameter corresponding to fiber length

L0, b is shape parameter.

The number of random crack cores in a composite

equals to the number of breaches germinated originally,

and these crack cores distribute discretionarily and
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independently in the composite. If mechanical property of

composites is unambiguous, the density of random crack

cores, i.e., the number of random crack cores in a united

length fiber, is determined only by the average tensile

stress of fibers, moreover, increases with the average ten-

sile stress. When the average tensile stress of fibers is rf,

the density of random crack cores q is given as follows:

q ¼ Fðrf ; d0Þ
d0

ð2Þ

here d0 is the ineffective length of composites [4].

The ineffective length d0 of composites is determined

jointly by characters of fibers, matrix and interface, which

could be calculated by shear-lag model. With a hypothesis

that tensile stress of broken fibers is linear with the distance

from breakpoint in the stress-recovery zones, an approxi-

mate expression on the ineffective length d0 is given based

on Kelly–Tyson shear-lag model [18] as follows:

d0 ¼ 2� pðd=2Þ2rf

pdss

¼ drf

2ss

ð3Þ

where d is the diameter of fibers; ss is the shear strength of

fiber-matrix interface.

The number of random crack cores m equals to the

product of the density of random crack cores and the total

length of fibers V, which could be expressed as:

m ¼ Int ½qV � ¼ Int
LN

d0

Fðrf ; d0Þ
� �

ð4Þ

where Int[ ] is the function of getting integers; L is the

length of a composite; N is the total of fibers in the com-

posite; the total length of fibers in the composite V = LN.

The critical size of random crack cores

If the further evolvement probability of a random crack

core is big enough, the further evolvement could be treated

as inevitable event, and the size of the random crack core at

the moment is considered as the critical size. The criterion

of the critical core size was given by Smith [19]. Consid-

ering fibers placed in hexagonal arrays, the critical size r of

random crack cores requires to satisfy the following

equations simultaneously:

FðKr�1 rf ; dr�1Þ\1� e�1

and

FðKr rf ; drÞ� 1� e�1 ð5Þ

where Ki ¼ maxðKi;j Þ; i \ j � ncon, and Ki,j is the stress

concentration factor of the fiber whose serial number is j

when i fibers have broken in the random crack core; ncon is

the biggest serial number of fibers enduring concentrative

stresses when i fibers have broken in the random crack

core; di is the influenced-length of the random crack core

with i broken fibers. Computational methods of these

variables will be given in the section ‘‘Analysis on

evolvement probabilities of random crack cores’’.

Failure probabilities of composites

In the random crack core theory, a number of random crack

cores distribute discretionarily and independently in a

composite, and the failure probability of the composite

under a certain stress equals to the probability of existing a

crack core evolving to critical size. Consequently, the

failure probability of a composite can be expressed as:

GðrfÞ ¼ 1� ½1� PrðrfÞ�m ð6Þ

where G(rf) is the failure probability of a composite under

fiber stress rf; Pr(rf) is the probability of a random crack

core evolving to the critical size r, which will be worked

out in the section ‘‘Analysis on evolvement probabilities of

random crack cores’’.

Analysis on evolvement probabilities of random crack

cores

The perfect evolvement process of random crack cores

Evolvement of a random crack core is an indeterminate

process, and evolvement paths are various. The evolvement

process can be expressed as in Fig. 1. According to the

local load sharing principle in refs. [20], once a fiber is

broken, six fibers around the broken fiber are all possible to

break. Considering the spatial symmetry, there is only one

evolvement path of the random crack core evolving from

one broken fiber to two. Corresponding to the number of

broken fibers in a random crack core evolving from 1 to 3,

4, 5 and 6, the number of evolvement paths are 3, 11, 80,

and 822, respectively. Goda [14] used Markov process to

describe evolvements of a random crack core. However,

Fig. 1 The evolvement process of a random crack core
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the number of evolvement paths increases rapidly with the

number of broken fibers in a random crack core, and

analysis on evolvement probabilities of a random crack

core based on Markov process is rather complicated.

All-out paths are given in Markov process (without

considering some fibers break simultaneously), but chance

of every path makes a great difference with each other. The

fiber, whose stress concentration factor is the largest,

always has the biggest probability of break. For predi-

gesting analysis and calculation, a perfect evolvement

process of random crack cores was proposed, which is

expected to replace the Markov process.

The perfect evolvement process of a random crack core

was presented on the assumptions that the fiber whose stress

concentration factor is the largest is the next broken fiber,

and the failure probability of the fiber equals to the proba-

bility of any fiber around the random crack core breaking in

a certain state. If stress concentration factors of some fibers

are the coordinately largest, the nearest fiber from the center

of the random crack core (the original crack core) is enacted

to break next. If some of these fibers from the center of the

random crack core are the coordinately nearest, the first

fiber in counter-clockwise from the last broken fiber in these

fibers is enacted to break next. According to aforementioned

rules, fibers around a random crack core break in turn.

Combining a load sharing principle, every evolvement step

of a random crack core is unambiguous.

Combining the local load sharing principle in refs. [20],

evolvement steps of a random crack core are determined.

According to the sequence of failure fibers are marked in

turn, shown in Fig. 2.

As a particular path of the Markov process, the perfect

evolvement process of a random crack core is not only a

path with the largest probability, but also a unique path

insuring every evolvement step of the random crack core

being a steady state. It is detected that if an evolvement

step of a random crack core departs from corresponding

steady state, the following steps will approach the steady

states with much larger probabilities.

In fact, in an evolvement course of a random crack core,

fibers do not always break one by one. In respect that the

perfect evolvement process of a random crack core can be

regard as a steady evolvement process, the failure sequence

of fibers in Fig. 2 could also be used to analyze evolvement

processes with some fibers breaking simultaneously.

Evolvement probabilities of random crack cores

Zeng [11] indicated that the influenced-length of a random

crack core, i.e., the length of stress-recovery zones of

broken fibers in the random crack core, increases with the

number of broken fibers in the random crack core. The

perfect evolvement process of random crack cores shows

that crack cores always tend to be circular. However, the

shear stress is not uniform along the crack boundary.

Because the tensile stress of matrix is always changeless,

the shear stress mainly distributes in zones near fibers

around the random crack core. Taking example of a ran-

dom crack core with three broken fibers, the main

interfaces enduring shear stress are lined out strikingly in

Fig. 3. A random crack core with i broken fibers is trans-

lated into an equivalent thick fiber whose section area is

equal to the sum of i broken fibers. We consider that the

perimeter of the equivalent thick fiber equals to the total

length of main interfaces enduring shear stress approxi-

mately. An example is shown in Fig. 3.

The diameter of the equivalent thick fiber is expressed as:

Di ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ipðd=2Þ2

p

s
¼

ffiffi
i
p

d ð7Þ

According to the Kelly–Tyson shear-lag model [18],

the influenced-length of the random crack core can be

expressed approximately as:

Fig. 2 The perfect evolvement process of a random crack core Fig. 3 Analysis on the main interfaces enduring shear stress
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di � 2� npðd=2Þ2r
pDiss

¼
ffiffi
i
p dr

2ss

¼
ffiffi
i
p

d0 ð8Þ

when i = 1, d1 = d0.

When the number of broken fibers in a random crack

core is i, the failure probability of the No. j fiber (j [ i)

under concentrative stress is shown as:

pi;jðrfÞ ¼
FðKi;jrf ; diÞ � FðKi�1;jrf ; di�1Þ

1� FðKi�1;jrf ; di�1Þ
ð9Þ

here, Ki,j is the stress concentration factor of the No. j fiber

when the number of broken fibers in a random crack core is

i, which could be calculated according to the local load

sharing principle in refs. [20].

Based on the assumption of the perfect evolvement

process of random crack cores, if the number of broken

fibers in a random crack core is i, the probabilities of the

number of broken fibers from i to i ? 1, i ? 2, and i ? 3

in a step, marked, respectively, as pi!iþ1, pi!iþ2, and

pi!iþ3, are calculated as follows:

pi!iþ1ðrfÞ ¼
Xncon

j¼iþ1

pi;j

1� pi;j

Yncon

j¼iþ1

ð1� pi;jÞ ð10:1Þ

pi!iþ2ðrfÞ ¼
Xncon�1

j¼iþ1

Xncon

k¼jþ1

pi;jpi;k

ð1� pi;jÞð1� pi;kÞ
Yncon

j¼iþ1

ð1� pi;jÞ

ð10:2Þ

pi!iþ3ðrfÞ ¼
Xncon�2

j¼iþ1

Xncon�1

k¼jþ1

Xncon

l¼kþ1

pi;jpi;kpi;l

ð1� pi;jÞð1� pi;kÞð1� pi;lÞ
Yncon

j¼iþ1

ð1� pi;jÞ

ð10:3Þ

where ncon is the biggest serial number of fibers enduring

concentrative stresses at the moment. When the number of

broken fibers in a random crack core is i, the probability of

the number of broken fibers from i to i ? q in a step,

marked as pi!iþq, can be deduced by analogy.

The evolvement probability of a random crack core with

i broken fiber is shown as follows:

piðrfÞ ¼
Xncon

q¼1

pi!iþq ¼ 1�
Yncon

j¼iþ1

ð1� pi;jÞ ð11Þ

Chances of some fibers breaking simultaneously exist in

evolvement processes of random crack cores, but it is

unpractical to consider circumstantialities fully, because of

their complexity. In previous investigations [12–14], the

possibility of some fibers breaking simultaneously was always

ignored. Because the perfect process changes megillah into

simpleness, it becomes possible to consider some fibers breaks

simultaneously. Here, multiform algorithms in many cases

such as ignoring some fibers breaking simultaneously,

considering two fibers breaking simultaneously and

considering x fibers breaking simultaneously, are discussed.

(1) Ignoring some fibers breaking simultaneously

When the stress level is low, the probability of some

fibers breaking simultaneously is much smaller than that of

fibers breaking one by one. For predigesting analysis, the

possibility of some fibers breaking simultaneously is

always ignored. Then, the evolvement possibility of a

random crack core from one broken fiber to the critical size

r is shown as follows:

PrðrfÞ ¼
Yr�1

i¼1

pi ð12Þ

(2) Considering two fibers breaking simultaneously

The algorithm ignoring some fibers breaking simulta-

neously brings errors to calculated results consequentially.

The algorithm considering some fibers breaking simulta-

neously is able to decrease errors. With considering two

fibers breaking simultaneously, the evolvement possibility

of a random crack core from one broken fiber to the critical

size r could be calculated as follows:

P1ðrfÞ ¼ 1 ð13:1Þ
P2ðrfÞ ¼ p1!2 ð13:2Þ
PiðrfÞ ¼ pi�1!iPi�1 þ ðpi�2 � pi�2!i�1ÞPi�2; 2\i\r

ð13:3Þ
PrðrfÞ ¼ pr�1Pn�1 þ ðpr�2 � pr�2!r�1ÞPr�2 ð13:4Þ

(3) Considering x fibers breaking simultaneously

With considering x fibers breaking simultaneously, the

evolvement possibility of a random crack core from one

broken fiber to the critical size r could be calculated as

follows:

P1ðrfÞ ¼ 1 ð14:1Þ

PiðrfÞ ¼
Xi�1

k¼1

pk!iPk; 2� i�x ð14:2Þ

PiðrfÞ ¼
Xx�1

k¼1

pi�k!iPi�k

þ ðpi�x �
Xx�1

k¼1

pi�x!i�kÞPi�x ; x\i\r

ð14:3Þ

PrðrfÞ ¼ pr�1Pr�1 þ
Xx
k¼2

ðpr�k �
Xx�1

l¼1

pr�k!r�lÞPr�k

ð14:4Þ
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Discussion on the perfect evolvement process

The perfect evolvement process of random crack cores is a

particular path of Markov process. It needs to be validated

whether the perfect evolvement process reflects evolve-

ment probability characteristics of random crack cores

correctly. With the shape parameter b = 5, the possibilities

of a random crack core evolving from one broken fiber to

2, 3, 4 and 5 are calculated through two methods based on

the perfect process and Markov process, respectively. For

comparing expediently, the crack influenced-length is

treated as a constant, chances of some fibers breaking

simultaneously are ignored, and expression (15) from refs.

[14] is adopted to calculate one-step evolvement

possibilities.

pi!iþ1ðrÞ �
Xncon

j¼iþ1

pi;j ð15Þ

Based on the perfect process and Markov process,

respectively, possibility curves of the random crack core

evolving from one broken fiber to 2, 3, 4 and 5 are plotted

in Fig. 4, which are marked as P2, P3, P4, and P5,

respectively. Obviously, the evolvement possibility curves

of the random crack core calculated based on the perfect

process and Markov process, respectively, are almost

superposed. It is indicated that the perfect process is able to

reflect evolvement probability characteristics of random

crack cores commendably.

Based on the perfect process, the evolvement possibilities

of a random crack core are calculated with considering the

influenced-length of the random crack core increasing with

the number of broken fibers. With the shape parameter

b = 5, errors of the algorithm ignoring some fibers breaking

simultaneously are analyzed by comparing to the algorithms

considering some fibers breaking simultaneously.

The evolvement probability curves of the random crack

core are displayed in Fig. 5. Pi is the possibility of the

random crack core evolving from one broken fiber to i, and

the corresponding curves are derived from three algorithms

such as ignoring some fibers breaking simultaneously,

considering two fibers breaking simultaneously and con-

sidering three fibers breaking simultaneously. Compared

with the calculated results with considering three fibers

breaking simultaneously, it is shown that the algorithm

ignoring some fibers breaking simultaneously makes the

evolvement possibilities of the random crack core be

underestimated and stress levels corresponding to a certain

evolvement possibility be overrated. Nevertheless, the

evolvement possibilities derived respectively from the

algorithm considering two fibers breaking simultaneously

and the algorithm considering three fibers breaking

simultaneously are almost accordant (the errors of stress

levels corresponding to a certain evolvement possibility are

less than 0.3%).

Consequently, based on the perfect process, the algo-

rithm considering two fibers breaking simultaneously is

satisfactory for calculating evolvement possibilities of a

random crack core.

The random crack core model for predicting strengths

Failures of unidirectional composites are always controlled

by fiber breaks and crack evolvements, therefore a random

crack core model for predicting the longitudinal tensile

strengths of unidirectional composites could be founded

based on the theory and the perfect evolvement process of

random crack cores. The statistical average longitudinal
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tensile strengths of unidirectional composites rc could be

expressed as follows:

rc ¼ Vfrf þ ð1� VfÞrm ð16Þ

where Vf is the volume fraction of fibers in the composite;

rf is the average stress of fibers when the composite

endures the maximal load; rm is the average stress of

matrix when the composite endures the maximal load.

When the failure possibility of a composite is equal to

0.5, the stress level of fibers could be treated as the average

stress of fibers rf corresponding to the composite enduring

the maximal load approximately. It can be acquired by

dichotomy with a stress zone ½a; b� determined first.

Figure 6 is the flow chart of the random crack core

model for predicting the longitudinal tensile strengths of

unidirectional composites. The parameters in the dark

frames are known quantities. The distribution of fiber

strengths could be investigated by tensile experiments of

single fibers.

Validation and discussion

Predicting strengths of unidirectional resin matrix

composites

Adopting the random crack core model, the longitudinal

tensile strength of a unidirectional T300/5208 composite is

predicted. Parameters of the composite are as follows [11]:

the volume fraction of fibers Vf = 0.7; the diameter of

fibers d = 7 lm; the tensile module of fibers Ef = 230;

corresponding to the length of fiber L0 = 25 mm, the

scaling parameters r0 = 2.98 and the shape parameters

b = 7.68; the tensile module of matrix Em = 3.45 GPa;

the shear strength ss = 25 Mpa. Using the crack evolve-

ment probability algorithm with considering two fibers

breaking simultaneously and the change rule of the influ-

ence-length, the size effect of composite strengths is

analyzed. The number of random crack cores m, the critical

size r, and the average stress of fibers rf corresponding

with a certain failure probability of a composite G are

listed in Table 1.

Table 1 indicates that the average fiber stress rf corre-

sponding with a certain failure probability G decreases

with the composite size, namely, the average strength of

the composite decreases with its size. It is disclosed that the

degree of dispersing of composite strengths also decreases

with the size. Obviously, the number of random crack cores

increases with the composite size (i.e., the total length of

fibers) and the average fiber stress rf. The critical size r of

random crack cores decreases with the average fiber stress

rf, so it increases with the composite size.

The test result of the longitudinal tensile strengths of the

unidirectional T300/5208 composite is 1.50 Gpa [21].

According to contemporaneous test standard [22], the

volume of the test segment of a unidirectional composite

specimen is about 820–4,100 mm3. Taking V = 2,000 mm3,

the longitudinal tensile strengths of the unidirectional T300/

5208 composite is predicted by several classical theoretical

models and the presented model. The predictive results and

their errors are listed in Table 2.

As a result of adopting the global load sharing principle,

the predictive values of Curtin’s fragmentation model [6]

are significantly higher than the experimental results,

which are listed in Table 2. Zweben [7] treated a break of a

discretional fiber as the criterion of composite invalidation

in his statistical crack evolvement theory. So the strength

of the composite is underestimated obviously. Batdorf [9]

considered that composite failure will occur when a crack

with some broken fibers is self-propagating. However, the

influenced-length increasing with the number of broken

fibers was not taken into account in Batdorf’s model, which

causes the crack evolvement probabilities be underesti-

mated and the composite strength be overrated. Although

the crack ineffective length increases with the number of

broken fibers was taken into account in Zeng’s model [11],

the stress concentration factors around cracks are overrated

and the composite strength is underestimated because of

the impractical assumption of two-dimensional fiber arrays.

Here, the present model of random crack cores considers

the practical rule of the influence-length increasing with the
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V LN=
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The number of random 
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Fiber diameter d ;
Interface strength
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mσ

The stress of fibers 
fσ

corresponding to 0.5G ≈

The stress of fibers 
( ) / 2f a bσ = +

If ( ) / 2b a ε− >
and 0.5G < ,

do ( ) / 2a a b= +

If ( ) / 2b a ε− >
and 0.5G > ,

do ( ) / 2b a b= +

( ) / 2b a ε− ≤
or 0.5G =

Fig. 6 The flow chart of the random crack core model for predicting

the longitudinal tensile strengths of unidirectional composites
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number of broken fibers. Using the crack evolvement

probability algorithm considering two fibers breaking

simultaneously, the predictive results of the random crack

core model are much more accurate than those of the

classical theoretical models. Corresponding to the standard

volume of the test segment 820–4,100 mm3 [22], the pre-

dictive strength of the unidirectional T300/5208 composite

is approximately 1.47–1.52 Gpa. Obviously, it is accordant

with the test result.

Predicting strengths of unidirectional metal matrix

composites

Nine panels of unidirectional SiC/Ti composites were

made with fibers: SCS-6 and matrix: Ti-1100 by NASA

Langley Research Center, which are marked A*I in turn.

The longitudinal tensile strengths of these composites and

mechanical capabilities of fibers, matrix, interfaces were

investigated experimentally by Gundel and Wawner [23].

The lengths of the composites are 38 mm, and the widths

of them are 6.35 mm. The fiber volume fractions and the

thicknesses of the composites are noted in Table 3. The

diameter of fibers is 140 lm. Corresponding to the length

of fiber L0 = 25.4 mm, the scaling parameters r0 and the

shape parameters b of Weibull function are shown in

Table 3. Ti-1100 is elastic–plastic, and the matrix stresses

rm corresponding to the composites enduring the maximal

load are 935 Mpa approximately. The interface strengths

are listed in Table 3.

The local load sharing principle [20] was deduced on the

assumption that matrix did not participate in redistribution

of the load. Normally, metal matrix have yielded before

composites fail [23], so the local load sharing principle

[20] and the random crack core model are also applicable

to metal matrix composites. The random crack core model

is adopted for predicting the longitudinal tensile strengths

of the unidirectional SiC/Ti composites, and the predictive

results and errors are noted in Table 4.

In Table 4, the predictive results of the longitudinal

tensile strengths of the unidirectional SiC/Ti composites

are accordant with the experimental results [23] basically,

and the errors are receivable. It shows that the random

crack core model is also accurate for predicting metal

matrix composites.

Conclusions

The random crack core model for predicting the longitu-

dinal tensile strengths of unidirectional composites is built

in this study. The model, based on the random crack core

theory and the perfect evolvement process in this study, is

Table 2 Theoretical results and their errors of the longitudinal tensile

strength of unidirectional T300/5208 composites

Curtin Zweben Batdorf Zeng Present

rc=GPa 2.50 0.44 1.87 1.35 1.49

Error/% 66.7 -70.1 24.7 -10.0 -0.7

Table 3 Correlative parameters of unidirectional SiC/Ti composites

[23]

Panel Vf h=lm r0=MPa b ss=MPa

A 0.15 1650 2950 9.1 200

B 0.15 1650 3930 10.1 200

C 0.18 1555 4310 13.9 200

D 0.20 1350 2890 5.8 200

E 0.20 1350 3850 12.3 200

F 0.26 1150 4270 12.3 75

G 0.28 1065 4640 12.6 75

H 0.30 910 3330 6.8 75

I 0.35 835 4410 11.6 75

Table 1 Size effect of unidirectional T300/5208 composites

LN=m G ¼ 0:1 G ¼ 0:5 G ¼ 0:9

m r rf=GPa m r rf=GPa m r rf=GPa

0.1 2 5 2.8252 4 4 3.0271 6 3 3.2119

1 14 6 2.6032 22 5 2.7584 30 5 2.8821

10 88 6 2.4492 125 5 2.5634 165 5 2.6586

102 582 6 2.3188 817 6 2.4237 1029 6 2.4977

103 3933 6 2.2034 5410 6 2.2968 6681 6 2.3609

104 27033 6 2.0983 36709 6 2.1837 44831 6 2.2413

105 187640 6 2.0009 252809 6 2.0801 306639 6 2.1331

108 104678008 9 1.8544 128926416 9 1.9054 133797942 9 1.9147
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validated by comparing the predictive results and mea-

surements of unidirectional composites. Profiting from the

assumption of fibers placed in hexagonal arrays, adopting

the local load sharing principle, and considering the

influenced-length of random crack cores increasing with

the number of broken fibers, the random crack core model

is much better than the classical theoretical models.

The perfect evolvement process of random crack cores

is proposed and validated, which predigests analysis and

calculation of crack evolvement probabilities remarkably.

Based on the perfect evolvement process, errors of the

algorithm ignoring some fibers breaking simultaneously are

discussed. The results show that the algorithm, ignoring

some fibers breaking simultaneously, makes the crack

evolvement possibilities be underestimated and corre-

sponding stress levels be overrated, while the algorithm

considering two fibers breaking simultaneously is generally

accurate enough for predicting composite strengths.

The size effect of composite strengths is analyzed and

incarnated by the random crack model. In the model, the

number of random crack cores and their critical size

increase with the composite size, while the average

strengths of composites and the degree of its dispersing

decrease with it.
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